skip to main content


Search for: All records

Creators/Authors contains: "Jackson, Donavan J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the past two decades, genomic data have been widely used to detect historical gene flow between species in a variety of plants and animals. The Tamias quadrivittatus group of North America chipmunks, which originated through a series of rapid speciation events, are known to undergo massive amounts of mitochondrial introgression. Yet in a recent analysis of targeted nuclear loci from the group, no evidence for cross-species introgression was detected, indicating widespread cytonuclear discordance. The study used the heuristic method HYDE to detect gene flow, which may suffer from low power. Here we use the Bayesian method implemented in the program BPP to re-analyze these data. We develop a Bayesian test of introgression, calculating the Bayes factor via the Savage-Dickey density ratio using the Markov chain Monte Carlo (MCMC) sample under the model of introgression. We take a stepwise approach to constructing an introgression model by adding introgression events onto a well-supported binary species tree. The analysis detected robust evidence for multiple ancient introgression events affecting the nuclear genome, with introgression probabilities reaching 63%. We estimate population parameters and highlight the fact that species divergence times may be seriously underestimated if ancient cross-species gene flow is ignored in the analysis. We examine the assumptions and performance of HYDE and demonstrate that it lacks power if gene flow occurs between sister lineages or if the mode of gene flow does not match the assumed hybrid-speciation model with symmetrical population sizes. Our analyses highlight the power of likelihood-based inference of cross-species gene flow using genomic sequence data. [Bayesian test; BPP; chipmunks; introgression; MSci; multispecies coalescent; Savage-Dickey density ratio.]

     
    more » « less
  2. Abstract

    Conservation efforts rely on robust taxonomic assessments that should be based on critical assessment of interspecific boundaries, infraspecific variation, and potentially distinctive peripheral populations. The meadow vole (Microtus pennsylvanicus) is widely distributed across North America, including 28 morphologically defined subspecies and numerous isolated populations. Because some subspecies are of high conservation concern, we examined geographic variation across the range of the species to test existing infraspecific taxonomy in terms of local and regional diversification. We sequenced mitochondrial DNA (mtDNA) from 20 subspecies of M. pennsylvanicus and contextualized infraspecific variation through comparison of pairwise genetic distances derived from an extended data set of 63 species of Microtus. We found strong support for at least three divergent clades within M. pennsylvanicus, with observed intraspecific clade divergence exceeding that between several pairwise comparisons of sister species within Microtus. Six nuclear genes were then sequenced to test the validity of mtDNA structure and to further evaluate the possibility of cryptic, species-level diversity using Bayes factor species delimitation (BFD) analyses. BFD consistently and decisively supported multiple species based on the multilocus approach. We propose that taxonomic revision of the meadow vole is required, with the eastern clade now identified as M. pennsylvanicus (Ord 1815), the western clade as M. drummondii (Audubon and Bachman 1853), and the coastal Florida clade as M. dukecampbelli (Woods, Post, and Kilpatrick 1982). We suggest that such an arrangement would more closely reflect evolutionary history and provide critical context for further examination of distinctive southern peripheral populations that harbor novel evolutionary legacies and adaptive potential.

     
    more » « less